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Kinematics and Dynamic Modeling for Holonomic 
Constrained Multiple Robot Systems through Principle of 

Workspace Orthogonalization 

Sam-Sang, You* and Seok-Kwon, Jeong** 
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This paper deals with an efficient mathematical modeling for multiple robot manipulators (or 

multifingered robot hands) holding and transporting a rigid common object on the constraint 

surfaces, subject to a set of holonomic (integrable) constraints. First, the kinematics and 

dynamics of the multiple robot systems are formulated. After a series of model transformations, 

a combined dynamic model is derived from a unified viewpoint. Then the system dynamics can 

be decomposed into two orthogonal subsystems: the (reduced-order) motion subsystem and the 

force subsystem. From a practical point of view, the new dynamic model presented in this paper 

is suitable form for dynamic analysis and hybrid (position/force) control synthesis. 
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Nomenclature  

~n : T h e  n-dimensional  vector space with 

real elements 

~n,:m : A set of  all real-valued ( n •  

matrices 

A >0  : A positive definite matrix A 

]l AII : The induced norm of a real matrix A C  

IIA II = [ A m . x ( A r A ) ]  ~/2 where 
/~max is the maximum eigenvalue 

C p : A  set of p-times continuously differ- 

entiable functions 

En : An ( n x n )  identity matrix 

0n : A n-dimensional  null vector 

0n• : A ( n •  null matrices 
dirn(o) : The dimension of (o) 

rs (A) : The range space of matrix A 

rk (A) : The rank of  matrix A 
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n s ( A )  : The null space (or kernel) of a matrix A 

~(~ : a and b are arbitrary superscripts and 

subscripts, respectively, which are used 

to characterize the quantity (o) of i th 

manipulator  in the local coordinate sys- 

tem ( ~ b )  with respect to a frame ( ~ a )  

@ : The cross-product  operation 

(o)+ : T h e  pseudoinverse or Moore-Penrose 

inverse of a matrix (o) 

I. Introduction 

Recently, a single robotic system has been 

utilized in modern industries. Among the various 

approaches, the robust adaptive control methods 

(Sadegh, et. al., 1990; You, et. al., 1996) have 
been extensively used. Due to its capabili ty and 

performance, the practical applications of such a 

system to higher level tasks are severely limited. 

To overcome the drawbacks, there has been grow- 

ing interest in investigating the coordinated 

manipulat ion of multiple robot systems. For 
instance, in the advanced tasks involved in flex- 

ible manufacturing systems, the cooperation 
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among two or more robots is required to accom- 
plish the tasks successfully. Additionally, the 
multi-manipulator system provides higher flexi- 

bility and dexterity in performing complex tasks 
like human arms. Unfortunately, the multiple 

robot system forms closed kinematic chains, 

(Kiovo, et. al., 1992) which impose additional 
kinematic and dynamic constraints on the sys- 

tems, thus the manipulation of such system is 

extremely complicated. 
An important prerequisite to the dynamic anal- 

ysis and the coordinated control of the multi 
-robot  system is to obtain a proper mathematical 

model of such systems. The dynamics of con- 
strained :systems are discussed in references (Bla- 

jer, 1992:: Huang, et. al., 1994; You, 1996). Fur- 
ther, the kinematics and dynamics of multiple 

robots are found in several places such as in 

references (Kiovo, et. al., 1990; Kerr, et. al., 1986; 
Chiacchio, et. al., 1991; Nakamura, 1991; Ahmad, 

et. al., 1991), among others. However, only a few 

articles consider the constrained multiple robot 
system carrying a common object. From a unified 

viewpoint, they have computationally inefficient 
formulations for position-force synthesis. 

The major objective of this work is an attempt 
to develop a unified mathematical model for 

multi-fingered robots, cooperatively manipulat- 

ing the common object along rigid constraint 
surfaces. First, the overall system model is 

obtained by combining the kinematics and 

dynamic constraints with the multi-manipulator 
dynamics. After a series of transformations, a 

reduced-order (decoupled) dynamic model is 

derived. Since the position- and force-controlled 
subsystems are efficiently decoupled in this 

method, each subsystem can be manipulated in- 

dependently and simultaneously. 
The content of this paper is organized as fol- 

lows: In Sec. 2, the preliminaries and system 

description are presented. In Sec. 3, we provide 
the system parameters and kinematic formula- 
tions. Section. 4 gives the dynamics of manipulat- 
ed objecl:, while the unified dynamic model is 

proposed in Sec. 5. Finally, the'conclusions of 
this paper are summarized in Sec. 6. 

2. Preliminaries and System 
Description 

Consider a cooperative multiple robot system 
in which multifingered hands are supposed to 

manipulate a common object along rigid con- 
straint surfaces. As illustrated in F:ig. l, the 

multil~le robot manipulators are constrained with 
each other as well as by the external environ- 

ments. The overall system under consideration 

comprises three main components; v ( >  2) 
robotic manipulators, the common object (equiv- 
alently the payload), and the constraint surfaces. 

To facilitate further development, the following 

assumptions are made: 
IA1]: Each robotic manipulator having n 

joints contacts the common object with a point, 
imposing the internal constraints. 

[A2]: The constrained motions between the 

object and the external constraint surfaces are 
achieved through frictionless point contacts, 

imposing the external constraints. 
[A31: Each manipulator grasps the object 

firmly at a specified point, and their mutual 
positions and orientations are invariant through- 

out the system motions, i. e., a rigid grasping. 

External Constraints 

0,0 0 ~ q .  ,r~ ,, ~ z ,lh"" ~q, 

Fig. 1 Multiple robot manipulators carrying a 
common object on the constraint sur- 
faces. 
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[A4]: The closed kinematic chains are always 

formed through the contact points. 

3. System Parameters  and Kinematic 

Formulations 

This section is devoted to introducing the sys- 

tem variables and formulating the kinematic con- 

straints, which result from the closed-chain mech- 

anisms. To begin with, a set of coordinate systems 

are defined as follows (see Fig. 1). A frame ~ {  o~ 

--xwywz~ } is the world (or absolute) coordinate 

system fixed to the ground as the reference frame, 

and its location generally depends on a task 

geometry to be performed; ~3-].~{ oe-x~yez~ }~ is 

the i th end-effector coordinate whose origin ~o~ 

is assigned to the i th contact point between the 

end-effector and the common object; ~o{ oo 

-xoyozo } is the common object frame, and its 

origin oo is fixed to the mass center (CM) ; 52.~{ o~ 

--XcY~c} is the constraint coordinate system 

whose origin oc is located at the contact point 

between the object and the constraint surface. 

Unless mentioned otherwise, all Cartesian quan- 

tities are to be expressed in ~ .  It is supposed 

that the index i takes all values from the integer 

set [1, v] and indicates the quantity correspond- 

ing to the i th manipulator.  

Some system variables are now defined, p o =  

[ro r ~2or ]~  6 is the generalized position vector 

representing the configuration of the common 

object, with r o ~  a and f~o=[ao13oTo]r~lt 3. ePe 
= [~r r ~ f~  ~ 6  denotes the generalized position 

vector of  ith end-effector frame ~)-]~, with i r e ~  a 

and iCZe=-[iae d~e i7~] r" The generalized position 

vector of Y]c relative to 32.w is given by P c =  

[r  r f~cr], with l ' c ~  3 and 12c=[ac l~c Tc] r. The 

vector ~ d ~  a denotes the distance from the CM 

(oo) to each contact point ~Oe measured in ~ o ,  

while the distance between oo and Oc in terms of 

52.0 is specified by d o ~  3. 

In addition, i F e = [ d  r ~ n ~ r ~  ~ denotes the 

vector of  generalized end-effector forces (or 

wrenches) acting through the contact point ~o~ to 

the common object, where ~ f e ~  3 and ~ n e ~  a 

are the vectors of the forces and the torques, 
respectively. F o = [ f o  r n o r ] r ~  ~ represents the 

i th manipulator ~X,r ~ 

�9 . ~ ~ .X 
�9 . .~.'~ ~'~ ,~'~ 

. , <:.iXc 

i q'2 

zw T,T 

i V o ~  jw > Y~ 
~ / x w  

Fig. 2 Geometrical representation of Euler 
angles (yaw, pitch, and roll). 

generalized forces acting on the CM of the object 

by iFe. In this paper, the term generalized posi- 

tions include both positions and orientations, and 

the generalized forces include both forces and 

torques. 

For  representing an arbitrary orientation of a 

rigid body in the space ~It a, the rotational motion 

al2b can be described by three Euler angles shown 

pictorially in Fig. 2. More specifically, the Euler 

angles are specified in terms of  the images of three 

parameters { a, /~, and 7 }, obtained by perform- 

ing three elementary rotations of a body-at tached 

frame 3-].b (where iS].e, Zo ,  and ~ c )  with respect 

to the fixed frame ~]a (where 'Y]w); that is, rotat- 

ing a angle about the z axis first, then /~ angle 

about the new y axis, and finally 7 angle about 

the new x axis. Then the resulting overall trans- 

formation with the Euler angles is given in a 3 • 

3 matrix as 

[ - CaC# CaSaSr--  SaCr CaS~Cr+ SaSr 

7Re = s~c~ sas~s,+c~c, s~sBcr-casr (1) 

- -  S.a CaSt CaCr 

where c a = c o s ( a ) ,  s~=sin( /~) ,  and c r = c o s ( 7 ) ,  
and so on. In Fig. 2, the vectors i~o), j~o), and k~o) 

~ a  denote coordinate vectors of the principle 

axes of the arbitrary frame ~o~ (where ~ or 

~,w). Thus the orthogonal rotation matrix WRe 
(o) :~3 _~3 (with R R r = E  and R - I = R  r) 

maps the vectors in ~ b  to those in ~ .  

Furthermore, a w b ~ a  describes the vector of 
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the angular velocity of a flame ~2~ as viewed in 
~ .  The generalized motion (You, 1994) is speci- 

fied by (r, R) Effta• SO(3) = S E ( 3 ) ,  where SO 
(3) denotes a set of all proper 3 •  rotation 
matrices on ~lt 3, which is a three-dimensional 
submanifold of ~9. It can be formally defined as 
the Special Orthogonal group of  order of 3: 

SO(3) ={ RE{Ra• det (R) =1,  R r R = E  }. 

Consequently, the motions of the rigid body 
belonging to 6-dimensional manifold are re- 
presented by the Special Euclidean group SE (3). 
The rotational velocity representing the relation- 
ship between the angular velocity (a(Db) and the 
rates of Euler angles ( ~ b = [ d ~ 2 ]  r) is given by 

~(D,, = ~Fb%0~ (2) 

where the mapping f u n c t i o n / ~ a •  is defined as 
(Amirouche, 1992; You, 1996) 

F ( ~ 2 ) =  0 c~ c~so 
1 0 - s ~  

The singularity (or degeneracy) is likely to 
occur at d e t ( F ) = 0  in which the Jacobian [ '  is 
rank deficient. Although the singularity is not 
avoided in Euler angle representations, the matrix 
F is assumed to be nonsingular over any ,(2 of 

interest. 
With the notations defined above, the two 

representations of  the velocities (or twists) are 

related as 

ave = aNbalj b (3) 

w h e r e  a v  b = [algT a(Dbr ] T ~})~6 and ~lib = [~fr ~.O~ r 

~N6. A nonsingular matrix ~Nb is given by aNb 

= [  0aE~a 03•215 

Let iq=:[;qx "'" ,q,,]r be the vector of  the joint 
positions for the i th manipulator. Then the 
position vectors are suitably arranged to form the 
extended joint-space variables q s ~ R  v~ with q , =  
[~q ... vq] r. Each manipulator has a forward 
kinematic,; providing the relationships between 
the joint-space and the operational space vari- 

ables as 

,p~=,h( ,q ) ,  ( i=1 , - . . ,  v) (4) 

where ih (~ : C z ({R n ---" {R 6) is twice continuously 

differentiable function. By virtue of Eq. (3), the 
twist vector of the end-effector for the ith manipu- 
lator is analogously given as 

iV  e = i N e  ilJe = i J i~i  (5)  

where i ve= [ i f  r iw~ ~ and ilJe=[if r /~r]r,  with 

03~3 iFe ' " 
which is the standard Jacobian of  the i th manip- 
ulator with a full rank, transforms the vector of 
joint-space velocities to that of the end-effector 

velocities with det  (i J)  4=0. Due to rigid grasping, 
there are no relative motions between the object 
and the arm's end-effectors. The following 
kinematic relation can be established at each 
contact point 

i r e : r o  + WRo ~d (6a) 
i(De : (Do (6b) 

where R ~ S O ( 3 )  (CiR a• is an orthogonal rota- 
tion matrix that transforms the local vectors in 
~ o  to the representations in ~w. The following 
identities can be utilized for the further develop- 
ment: 

d dt (R)=(D(~R and ( D @ x = - x |  V x ~ i R  a 

With the foregoing definitions, the following 
equation relates the generalized velocity of the 
end-effector to that of  object's center of mass: 

,.v~ = ~QN o15 o = iQrvo (7) 

where Vo=[ffo r (Dor]rEffl 6 and 16o=[I;o r s 6, 

with No:I-  Es 0a• ]. The mapping function iQ  
L 0~• Fo d 

~ •  is defined as 

03• 
iQ=[ -D(wEl~o id) EaJ  (8) 

which is the positive-definite and nonsingular 
matrix. In Eq. (8), the operator D~-ff{ 3• is 
introduced as 

D(z) = z Q ,  with z ~  3 

where 

D(z) :  ~a__, so(3) ~-* 0 i - 
- -  2 : 2  ~] 

Thus the matrix D identifes a one- to-one corre- 
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spondence between a three-dimensional  vector z 

and so(3) ,  which is a 3 • 3 skew-symmet r i c  
matrix with so(3) ={ A ~ 3 •  A r =  - A  }. 

Aggregating all robots acting on the common 

object gives 

v ~ = N p , = J ~ v o = Q ~ v o  (9) 

where all terms can be augmented as 

V e = [ l V  T . . .  vveT]T~  60 
�9 T 60 pe=[lri~ ... vp~q ~ 

ci~=[~ci ~ ... ~ { i ~ ] ~ o .  
N = B l o c k  diag[,Ne, "", oNe], ~ s o •  

J ~ -  Block diag[1J, ..., J ] ,  J s G ~  6~215176 
Q~=[~Q ... v Q ] c ~  6• 

In the above formula, the operator Qs, which 

has a full row rank with rk(Qs) =6,  is called the 

"grasp" matrix. (Chiacchio, et. al., 1991; You, 

1994) 

Similarly, the generalized position vector of Oc 

relative to 3-~.w is given by 

r c = r o  + ~Rodo (10a) 
Wc= Wo (10b) 

The corresponding velocity constraint on the 

external surfaces is obtained as 

vc=Qo~vo (11) 

where, by the virtue of (8), Qo is defined as 

E3 0E33] ~6•  
Q ~  ) 

4. D y n a m i c s  o f  M a n i p u l a t e d  Objec t  

First, consider the common object system in 

which the object is rigidly grasped by v robotic 

arms without the external constraints. We can 

describe the dynamics of a manipulated object in 

3q, w as follows: 

mor o + ffZog:fo (12a) 
WRo f WR ro& o + Wo@[ WRo f~RorcOo] 

: -no  (12b) 

where r ~ o E ~  + and f ~ 3 •  represent the object'  

s mass and the inertia matrix, respectively, g =  

[0 0 - 9 . 8 ]  T denotes the vector of  gravitational 

accelerations. The wrenches ( f o C ~  3 and n o ~  

~3), representing the vector of the resultant forces 

applied to the CM of the object by v manipula- 

tors through the contact points, are defined as 

fo = X~=l,fe (13a) 
no =Z'L~ (,fie-- ~Rold@~fe) (13b) 

The object dynamics (12a, b) can be put into a 

compact matrix-vector form as 

where 

MoVo + Covo + G o = F o  (14) 

Mo=I~0E3 03X3 q 6• 

03• WRo f~Ro rj~ 

D (Wo) WRo fWRo~J 

G o = [  ~ o g  ] ~  
03 J . . . .  

F o = [ f o  r n o r ] r ~  s. 

It should be noted that the dynamic model (14) 

satisfies the following fundamental properties 

(Ahmad, et. al., 1991; You, 1994). 

IPI I :  Mo is a symmetric and positive-definite 
inertia matrix. 

[P2]: ( M o - 2 C o )  is a skew-symmetric matrix. 

From Eqs. (13a, b), the equivalent forces on 

the object can be further characterized as 

Fo = 2 L , i Q i F e  = Q~Fs (15) 

with F o = [ , F f f  "'" vFer]r@~ 6~ By virtue of  the 

duality between the force (wrench) and the veloc- 

ity (twist), we can also determine the wrench 

(15) by referring to the Eq. (9). In this case, the 

grasp matrix Qs is referred to as the force trans- 

mission matrix, which is to identify the contribu- 

tions of  the interaction forces of each manipulator 

to the external forces on the CM of  the object. For  

the frictionless point contacts, the number of 

independent constraints by rigid grasping is equal 

to m c ( = 6 v - r k ( Q ~ )  ). 
We now turn to the problem of  considering the 

external constraints imposed on the common 

object. If the constraint surfaces have dimension 

m ( <  6), the algebraic equations can be expressed 
as (You, 1996) 

~ I  (po) = [ e l ,  (Po)"" Cj~ (po)] ~ =0m 
with po ~ SE(3)  (16) 

where Oj(o) :  C2(~6__. Nm) is a differentiable 
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and mutually independent function over any po 

of interest in a subset o f ~  ~. The "natural" restric- 

tions given by (16) are commonly called 

"holonomic" constraints. (Amirouche, 1992; 

You, 1994). The corresponding velocity con- 

straints can be obtained by 

J : v o : 0  (17) 

where 

j:=3~: :[ 3r r ... ~f3:mr l r ~ m •  
~po ~po 3po 

with ~ ~ 6 .  
c~po 

Since the above geometric constraints are mutu- 

ally independent, the matrix J :  has a full row 

rank with rk ( J : )  : m. Note that the row vectors 

of J :  span the normal space of the constraint 

surfaces. Provided that the common object is 

constrained to follow the rigid constraint surfaces, 

the system is also subject to a set of ( 6 - m )  

"artificial" constraints, namely, 

(Da(Po):[q~m(Po) "'" ~p(6-m)(po)] r (18) 

where q),(o): C 2 ( ~ 6 - ~  16-m)) is a mutually in- 

dependent function. Evidently, the combined sets 

{ r  q)t, } are mutually independent and twice 

differentiiable with respect to po such that the 

constraint surfaces can be parameterized by 

p , := [  e f  r  (19) 

The wfiocity relation can be obtained as 

v,::Ja:vo (20) 

with J a r : [ J : r J ~ r ~  6• We can define the 

matrix jp~(6-m~• with r k ( J ~ ) : 6 - m ,  whose 

row vectors span the tangent space of the con- 

straint surfaces as 

3~a [ 3~alr 3~p~6_m)r ~T j " J 

with 3q~aJ ~6 

Then the following relations hold: 

Jp.J~=0(or J:.J~=0) 

It is clear that the column vcctors of J~ span the 

null space of J~ (i. e., r s ( J ~ n s ( J a ) ) .  In 
addition, the vector space spanned by J~ is the 
space of all vectors orthogonal to Ja  and called 

the orthogonal complement of Jp. As a conse- 

quence, the constraint surface frame has a set of  

vectors 

{ 3r  m ) "  ~ a f  
3 ~ o '  ( i=1, . . . ,  3 p o '  

( j = l ,  ..., ( 6 - m ) ) }  

as basis in 6-dimensional spaces. 

R e m a r k  1 { Direct sum and decomposition }: 

Let r s ( J : r ) a n d  rs (J~  be the two subspaces of 

~6. In case rs (J~  A rs (J~  ={ 0 }, the space { rs 
( j r )  + rs (Ja r) } is referred to as the direct sum of 

the subspaces rs(J:  r) and r s ( J a  r) and re- 

presented by rs ( j r )  Qrs (Jar) .  Further, one can 

obtain the tbllowing result: 

dim{ rs ( JT)  Ors  (Ja r) ) =d im{  rs ( j r )  } 

+ dim{ rs (Ja r) }. 

Based on the remark, it is possible to decom- 

pose a given position vector into two orthogonal 

subspaces 

9~ 6= rs ( JT)  @ r s  (Jar) ,  with 

rs ( JT)  A rs (Ja T) ={ 0 }. 

In other words, the r s ( J a  r) specifies the 

motion subspace, and the rs ( j r )  spans the force 

-control led subspace. 

Then the resultant forces F o c ~  6 at the CM 

exerted by the contact forces can be obtained by 

For (2 I) 

where a~,fft m is the vector of Lagrange multipliers 

associated with m constraint surfaces. Finally, the 

dynamics of the manipulated object can be given 

by 

MoVo+Covo+Go:Q~F~-Jfr~ (22) 

The object model is now combined with the 

dynamic model of  multifingered robot hands via 

the constraint equations to formulate the 

dynamics of the entire system. 

5. A Unified System Modeling of 
Constrained Multiple Robots 

Using Lagrange's formulation, the dynamic 

model for the i th rigid robot is described in the 

jo int -space variables as 
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~M(~q; ~(9)~ff+~C(~q, ~q; ~O)~ei 
+~G (~q; ~O) = ~ T -  ~JT(~q) ~F~ (23) 

where /q, ic/, and iff are the generalized vectors 

representing the joint  positions, velocities, and 

accelerations, respectively, ~ M ~  "• is an inertia 

matrix, ~ C c ~  n• is a matrix function containing 

terms such as Coriolis and centripetal torques, ~G 

~ n  is the vector of  gravity torques, g T ~  ~ is 

the joint  torque vector, and i O C ~  k~ is the vector 

of manipulator  parameters (e. g., link masses, 

link lengths, moments of  inertia). All other terms 

are previously defined. 

It is known that the dynamics of the individual 

manipulator  (23) has the following fundamental 

properties (Sadegh, et. al., 1990; You, et. al., 
1996) : 

IP3]: ~M is a symmetric and positive-definite 
matrix, i. e., ~ M = ~ M r > 0 .  

[P4]: ( I M - 2 i C )  is a skew-symmetric matrix, 

that is, x T ( ~ M - 2 ~ C ) x = 0 ,  ' q ' x E ~  ~. 
[P5]: A part of the dynamics (23) is linear in 

terms of a suitably defined set of parameters, 

~M(~q; iO)y--~C(~q, ~cj ;~O)x+~G(~q; i(~) 
=~Y(~q, ici, x, y)~O, 

where ~ y ~ ' •  is a regressor matrix (You, et. 

al., 1996) with some vectors (~q, ~r x, y ) ~ ' ,  

and ~ O ~  ~' is the vector of system parameters of 
interest. 

The extended joint-space dynamics obtained 

by grouping v such equations can be expressed in 
a concise form as 

Ms(q~; O)61"~+Cs(q~, c~s; O)ci~ 
+Gs(qs ;  O) = T s - J s r ( q s )  F~ (24) 

where all terms are compacted into 
qs=[~qr"'vqr]r ~ vn, 

Ms = Block diag[xM ( lq) ,  "", vM (vq) ], 

C~=Block diag[~C, ..., oC], C s ~  . . . . . .  
G ~ - - [ ~ G r . . . ~ G T ] T ~  ~ ,  

Js=Block diag[~J, ..., oJ], J ~ f f t  ~ . . . .  

F ~ =  [ ~ F J - - - v F J ]  ~ ' ,  

Ts = [~T ~-'' ~T ~ ] ~ ~ ~ ,  

O ~  ~. 

The physical meanings of all terms above have 

been previously explained. Notice that the 

dynamics (24) also satisfies the fundamental 

properties listed in (23). Although the kinematic 

redundancies are important to the development of 

more dexterous robot systems, we focus our atten- 

tion only to kinematically non-redundant  robotic 

arms (i. e., n - -6 ) .  

The object dynamics will be transformed into 

the formulations in the extended joint-space in 

what follows. From (9), the twist vector for the 

common object in the Cartesian space can be 
written as 

vo=JsLeis (25) 

where JsL = (QZ) +Js, with JsL@~ ~• and (Q J )  
+@~6• The matrix (Q~)+ with Qs having a full 

rank is defined as 

( Q s ) + = Q J [ Q s Q J ]  -1, with E = Q s ( Q s )  § 

where (Qs) + satisfies the four Penrose conditions 

(You, 1994). Furthermore, differentiating (25) 
with respect to time yields 

V:o = J'sLci s + JsL ffs (26) 

From (22), the object dynamics can be rewritten 

as  

Moqo+Covo+Go+Jf ' (y :QsF~=Fos  (27) 

where F o s c ~  6 represents the vector of  resultant 

forces on the common object. For  the given forces 

Fos, the general solution of Eq. (27) can be 

obtained in the form 

F s =  (Qs) +Fos+Sfc ,  (28) 

where S ~  6 . . . .  and f c l ~  me, with r k ( S ) = m e  

and rs (S) c r s  ( E 6 " -  (Qs) +Q~). Since the matrix 
S is the orthogonal complement to Qs (or Q s ' S =  

0), the operator S projects any arbitrary vector fcl 

into the null space of  Qs. We note that the choice 

for f~  is not unique, however, Sf~l lies in the null 

space of Qs, where r s (S )Cns (Qs) .  Due to the 
kinematically redundant mapping between the 

end-effector space and the object space (that is, 

d i m ( F s ) > d i m ( F o ~ ) ) ,  there exist an infinite 
number of solutions for the end-effector forces to 

provide Fo~. The first term of (28), denoted by 

(Qs)+Fos, is called the minimum (Euclidean) 
norm solution and is the component of Fs that 

contributes the motion of object Fo~. The other 

term, denoted by Sfc~, is referred to the null 
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solution and is the subspace of  the forces F8 
which causes the internal (or grasping) forces on 
the object. The internal forces do not affect any 
motion of object. In fact, the manipulation forces 
and internal forces can be determined by using 
the column spaces and the null spaces of Qs, 
respectively. 

Consider the motion constraints of  the overall 
system resulting from physical contacts. To begin 
with, the external constraints between the com- 
mon object and the rigid constraint surfaces are 
investigated. The constraint Eq. (17) can be 
expressed in the extended joint-space variables as 

J fJsLt l s :0m (29) 

In addilion, there exist the internal constraints 
between the end-effectors and the common object. 
Suppose that the constraint equations in the end 
-effector variables are given by 

qrj(pe) : 0 ~ , :  with p e a S E ( 3 )  (30) 

where ~/%(o): C2(~)~6v---~ mc) is m c ( < 6 v )  mutu- 

ally independent and differentiable function. 
Then the velocity constraints can be written as 

S rve :S r J~c i s :0m~,  with S t :  3~F: (31) 

Next, combining Eqs. (29) and (31) yields 

Jflt~s:-Omt, with J y t =  Js (= ~mt• 
" J /  J~L 

(32) 

where m t ( : m + m c )  is the number of total 
contact constraints, namely, the dimension of  
force-manipulated subspaces. Thus the constraint 
Jacobian matrix J : t  with a full rank projects the 
joint-space velocities into the normal directions 
of  a set of hypersurfaces described by ~:-----0 and 

</)+=0. 
Based on the above observations, the combined 

contact forces can be defined as 

F~I = [ f ~ : a r ] r ~  ~'~ (33) 

The corresponding forces can be expressed in the 
joint-space as 

T=+ : J z r F ~ l .  (34) 

It is worth noting that the number of degrees of 
freedom (DOF) lost in motion due to the closed 

kinematic chains is equal to the dimension of the 
spaces for the total contact forces. 

The kinematic and dynamic constraints are 
then combined with the extended manipulator 
dynamics to formulate the entire mathematical 
model. To do this, introducing (25) through (27) 
into (28) and substituting the resulting equation 
into (24) yields 

Msffs + Csc/s+ G~+ Jsr{ (Q~) +[MoVo+Covo 
+Go+J/r~] +Sfcl  } =T~. 

After some algebraic manipulations using (32) 
and (33) with J s r ( Q ~ ) + : J s f f ,  the above equa- 
tion can be abbreviated in a concise matrix 
-vector form as 

M~ffs + C: i~  + Gu = T ~ -  Jj lrFcl  (35) 

where the effective quantities in the extended joint 
-space are given as 

M~:=M~+J~LrMoJ~L, M ~  6~• 
C~ == Ca + J~LrMo J's~ + J~L TCoJ'~L, 
Cues~ 6v• 

G~=Gs+J~LrGo, G ~  ~v 

As a result, the Eq. (35) represents the com- 
plete dynamic model of the constrained multiple 
robot systems. All fundamental properties as in 
(23) are also preserved by this transformation 
(You, 1994). Note particularly that (M~-2C~)  
is also a skew-symmetric matrix (see Appendix). 
However, there exist the coupled relationships 
between the position variables and the contact 
force variables. Furthermore, some variables are 
no longer independent due to the internal and 
external constraints. From a practical point of 
view, the dynamic model (35) may not be suit- 
able form for dynamic analysis and hybrid con- 
trol synthesis. 

In what follows, we will derive an appropriate 
system dynamics which overcomes all the defects 
mentioned above. Introduce a new generalized 
coordinate system first such that 

X~=[x /rx , r ]r  c ~  ~v (36) 

which is completely parameterized by x : =  
[ g:Tt~:r] r and x p =  t~p, where x : ~  m~ and xpE  
~- '~ ) .  Since the contact surfaces are infinitely 

rigid, x : = 0 ~ ,  or equivalently gr:=0mo and ~ : =  
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0,~. Differentiating (36) with respect to time 
yields 

�9 x T �9 T T T T T " " X~=[  j xp ] = [ J f r  J~,  ] q , = J c q ~  (37) 

where 

: % = J p v o = J ~ c i ~ ,  J ~p = J pJ sz ~ (6-nT)x6v 
j ~ = [ j j x r j ,  r]r, j ~N6"•  

[n the above formulations, the matrices Jy~ and 
J ~  represent the force-controlled directions and 
position-manipulated directions, respectively. 
They have full ranks with rk ( Jy~)=rn t  and rk  

( J ~ , , ) = 6 - m  such that the following relation 
holds: 

J ~ p . J / t T : O  (or J f l . J ~ p T : O ) .  

This implies that j~T is a null space of J~,, 
meaning rs (Jsl r) c ns (J~p). Using the above 
relations, we can decompose the space ~6v into 
two orthogonal subspaces in the sense that 

~6v = YS (jflT) (~ rS (J ~pr), 

with rs (JI1 r) A rs (J~,pr) ={ 0 } 

from which a new basis is formed in the 
6v-dimensional spaces. 

In case of constrained motions, some variables 
cannot be specified in arbitrary directions but in 
the constraint manifold 

AJmani/oza={ X/~{Rm'; Xf=0m,, Xy:0m, }. 

AS we shall see, this condition leads to the 
dimension reduction of the system. Since there 
exist m~ contact constraints, the overall system has 
total (6--m)  DOF of mobility. 

For the further development, we introduce a 
partitioned identity matrix as 

where E / = [ E m ,  r ! 0 r ] r ~  ~ . . . . .  and E , =  
[O r i E(~ m~r]r~N 6~• m~. AS long as singular- 

ities are avoided, some joint-space variables are 
given below 

ci~=JT~)[c (38a) 
c l " - - ' - ' r  +'-~3[" (38b) s - - d i e  A c  d i c  c 

Let us introduce the following identities: 

j r j  r _ r j  r j  r~-xj r _ r  E r 0]r. 
C f l  - - [  f l  ~ p  ] f l  - - L  mt 

By substituting (38a, b) into (35) and multi- 
plying j - r  on both sides of  the resulting equa- 
tion, the complete system dynamics are given in a 
set of mixed differential and algebraic equations 
(DAEs) as follows: 

Mc(X~; O~))[~+C~(X~,3~; O~)3~+G~ 
(Xc; Oc) = T c ~ -  E / F d  (39a) 

x f = 0  (39b) 

where 

X c = [ x f T x p T ]  T, 

T - 1  M c = J c  M~Jc 
C - - l - r  M i - l + ~ - r ~  T-~ 

c - - o c  u o c  o r  ~J t t , JC  , 

Gr TG~, 

T~=Jc-TT~.  

All terms defined above have the corresponding 
meanings as in (23). Finally, we have derived the 
unified dynamic model for the entire system. We 
conclude this section by briefly mentioning the 
following facts. Since we obtain x f = 0  in the 
transformed model, the motion of the entire sys- 
tem is indeed governed by the independent vari- 
ables xw As noted earlier, the position- and force 
-manipulated subspaces can be easily separated 
in these formulas. In fact, the dynamic model can 
be decomposed into two orthogonal subsystems 

E ~rT~s = E prMcE ~K~+ Epr C~E pxp 
+ E prGc (40a) 

T Es  Tcs-- E T M c E p f f ~ +  ETC~Epz~p 
r + E i  Gc+F~l (40b) 

Consequently, the first subsystem represents the 
reduced-order equations of motion (i. e., purely 
kinetic differential equations), while the other is 
concerned with the contact forces. 

It is worth realizing that the dynamic model 
(39a, b) also satisfy the following fundamental 
properties (You, 1994). 

[P61: M~ is a positive-definite inertia matrix, 

and is uniformly bounded by 3--< I[ M~ II-<~-, 
' 7 ' x c c ~  6v, where c~(>0) and c~ (<co)  are some 
positive constants. 

IP7]: (Mc-2C~) is a skew-symmetric matrix, 
that is, x~(M~-2Cc)x=0, x ~  6v 

Proof: See Appendix for the proof. 
[P8]: A part of the system dynamics can be 

expressed as a linear function in terms of a suit- 



Kinematics and Dynamic Modeling for Holonomic Constrained Multiple... 179 

ably selected set of system parameters with the 
vectors y and z ~  6~ 

M~(Xc; O~z+C~(Xc,  Xc; O~)y 
+Gc(X~; Oc) =Y~(X~, )~,  y, z) O~ 

where y,:~Gv• is regressor matrix, and OcC 
~k~ is the system parameter vector. 

From a unified point of view, the dynamic 
model (40a, b) is suitable form for dynamic 
analysis and hybrid (position and force) control 
synthesis, The interested reader may find some 
design examples for hybrid position/force con- 
trols of  the constrained multiple robots in refer- 

ence (You, 1994). 

6. Conclusions  

This paper has provided a unified framework 
for characterizing the kinematics and dynamical 
equations of the constrained multiple robot sys- 
tem. Based on an orthogonal complement princi- 
ple, the combined dynamic model is decomposed 
into the two orthogonal subsystems: the position 
and the force subsystems. In fact, a minimal-order 
governing equation is obtained by utilizing the 
constraint manifold condition. Furthermore, we 
can simultaneously and independently manipu- 
late the motion of the object and the contact 
forces (or the internal grasping forces and the 
constraint forces). This should be of importance 
to the dynamics analysis as well as the hybrid 
(position/force) control synthesis. Due to the 
closed kinematic chains and the constraint sur- 
faces, it should be noted that the number of 
degrees of freedom lost in motion is equal to the 
dimensions of the vector spaces for the contact 

forces. 
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Appendix: Skew-symmetries of the matrices 

(M~-2Cu)  in (35) and (Mc-2Cc)  in (39). 
First, to prove the skew-symmetry of (Mu 

-2C~) ,  let N ~ = M u - 2 C , .  Then we obtain the 
following results: 
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xrN .x=xr{  Ms+2j~LrMoJ'~L + JsLrMoJ~L 
--2 (C~ + J~LrMoJ'~L + J~LrCoJ~D }x 

=xr(M~-2C~)x+yr  (Mo-2co) y, Vx 
~ 6 ~  and y=J~Lx 

where (M~-2C~) and (Mo-2Co) are both skew 
-symmetric matrices. Hence, the matrix (Mu 
-2C~) is also skew-symmetric. 

Next, to prove the skew-symmetry of (M~ 
-2Cc), let Nc:M~-2Cc. Then 

xrNcx=x r [2J c-r  M uJ'c-1 + J c - r M u J ~ - i  
- 2  (J c-rM ~J'~ -1 + Jc-rCuJc -1) ]x 

=xTjc-r(M~-2C~) jc-lx 
=yr(M~-2C~) y, Vy=Jc-lx.  

Thus the fact that the matrix (Mu-2C~) is 
skew-symmetric confirms that (M~-2C~) is 
indeed skew-symmetric. The proof is completed. 


